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Abstract

AERMOD, the Environmental Protection Agency’s regulatory air dispersion model, models point, area and volume sources.  Due to the numerical integration involved, computation times for area sources are significantly longer than those for point and volume sources.  EDMS, the Emissions and Dispersion Modeling System, employs AERMOD in the modeling of airport dispersion.  As a means of reducing AERMOD run times, and therefore EDMS run times as well, the combining of vertically stacked area sources is considered and demonstrated in this paper.  Errors in concentrations resulting from such approximations are also analyzed.

Introduction

The Federal Aviation Administration’s required environmental airport model, the Emissions and Dispersion Modeling System (EDMS), models both the emissions and dispersion from sources typically found at an airport.  Dispersion in EDMS is modeled using the Environmental Protection Agency’s (EPA) AERMOD, the regulatory air dispersion model.  AERMOD’s dispersion algorithms are not incorporated directly into EDMS.  Instead, EDMS generates input files for AERMOD.  This allows updates to EPA’s models to be incorporated with little change, if any, to EDMS.
Because AERMOD had previously never been used to model aviation sources, the AMS/EPA Regulatory Model Improvement Committee (AERMIC) was consulted.  They recommended modeling aircraft with a series of area sources, as opposed to a string of volume sources.  Modeling dispersion from area sources requires numerical integration in two dimensions.  Since this demands lengthier computation times than modeling with other source types, it is in the modeler’s interests to eliminate and combine area sources whenever possible.  To compound the problem, aircraft on runways accelerate.  Consequently, area sources representing runways must be cut into short sections such that any aircraft’s speed differential from the beginning to the end along any section is minimized while keeping the total number of individual sources manageable.  For its solution, EDMS divides runways into sections fifty meters in length; hence, a single runway can require over sixty sources.

Intuitively, a fleet of aircraft of various types using a given physical runway should be modeled as several vertically stacked runways, each with a release height and initial vertical sigma for every aircraft type.  Because area sources model only one release height and one initial sigma, a different area source must be used for each portion of the fleet that shares the same parameters.  Although this solution is accurate, the multiplication of area sources to represent the same runway location only exacerbates the run time problem.  To reduce computation time and keep the total number of sources manageable, stacked area sources may be combined into a single area source whose parameters best represent the fleet at a particular physical location.  This compromise, however, will sacrifice some accuracy, as discussed in the error analysis to follow.

The initial conditions of vertical pollutant dispersion from an area source are modeled in AERMOD by a Gaussian distribution with mean at the release height and standard deviation equal to a given sigma-z0.  The effective dispersion from vertically stacked area sources is generally not Gaussian but rather the irregular or “lumpy” weighted sums of Gaussian distributions.  See figures 1 and 2 for a graphic comparison.  Statisticians may balk at this superposition, however the component Gaussian distributions from individual area sources do not represent probabilities but rather the distribution of physical particles in space.  Because a Gaussian distribution is completely defined by its mean and standard deviation, for simplicity, we assume that the best Gaussian approximation for an irregular distribution is one with equal mean and standard deviation.  In this case, the mean and standard deviation of each stacked area source is given, and therefore the mean and standard deviation of the sum distribution can be analytically computed as shown by the following derivation.

Figure 1.  Plot of a Gaussian Distribution
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Figure 2.  Plot of a Weighted Sum of Gaussian Distributions
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Derivation


A distribution is said to be normalized if the total area under its curve (i.e. the integral over all real numbers) is equal to one.  All Gaussian distributions are both normalized and continuous.  Therefore weighted finite sums of Gaussian distributions are also normalized and continuous, provided the weights sum to one.  Continuity is required to perform integration over all real numbers upon them.

The mean, , of a normalized continuous distribution, f(x), such as a Gaussian distribution, can be extracted via the integral
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where the angular brackets denote expectation value.  Here, the expectation value of x is the mean.  The variance (i.e. the square of the standard deviation, ) is given by
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(2)
where is the known mean.


A composite normalized continuous distribution may be constructed by a weighted sum of component normalized continuous distributions.  Let
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where fi(x) is a normalized continuous distribution with mean i and standard deviation i, wi is a weighting coefficient such that 
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(4)
and wi > 0 for all i and N is the finite number of component distributions.

The mean, , of f(x) is computed by
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(5)

Therefore, the mean of the composite distribution is equal to the weighted sum of the component means.  Similarly, the variance, , of f(x) is
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(6)

To complete this derivation, the expectation value of (x-)2 for each component distribution should be rewritten in terms of the component variance and mean as
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(7)

By substituting equation 7 back into equation 6,
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(8)

By equations 5 and 8 above, the mean and standard deviation of the approximating Gaussian distribution can be computed given the weights, wi.  However, theses weighting coefficients could be determined by a number of methods.

A simple scheme, which was implemented in EDMS 4.0, is to set each weight equal to the fraction of total airport LTOs that the respective aircraft contributes and use this to determine the dispersion parameters for all runway, queue and taxiway area sources.  This calculation is shown below in equation 9.
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where LTOi is the annual number landing-takeoff operation cycles for aircraft i.  Because emission rates vary for each aircraft, operating mode and pollutant, more sophisticated schemes could increase accuracy.

For each aircraft operation (takeoff, taxi, or landing) in a given area source, consider the product of annual time spent within the source boundaries and the aircraft emission rate in such an operating mode.  The sum of each of these products for a given aircraft is the total emissions that the aircraft contributes to the area source.  Setting each aircraft’s weighting factor equal to the fraction of the fleet emissions that it contributes is a more accurate schema.  If only a specific pollutant is to be modeled, then only the emission rates for the specific pollutant should be used.  Otherwise if any pollutant is equally likely to be modeled, then the aircraft emission rates for all pollutants may be summed together into an unspeciated emission rate.  For runways, wi is given by
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(10)

where Li and TOi are the annual number of landings and takeoffs, respectively, for aircraft i, ti,action is the time aircraft i spends in the runway source performing operation action, and ri,mode is the total aircraft emission rate for aircraft i under mode mode.

Implementation

Consider a fleet of three aircraft types: an Airbus 320-200 using two CFM56-5A1 engines, a Boeing 737-300 with two CFM56-3-B1 engines and a Cessna 172 Skyhawk employing a single Textron Lycoming O-320.  Assume the Airbus makes 1000 LTOs, the Boeing 500 LTOs and the Cessna 100 LTOs annually on the first 50-meter length of runway to be modeled.  The times-in-mode are derived from the associated default flight profiles in EDMS, which are based on the methodology presented in the Society of Automotive Engineers (SAE) Aerospace Information Report (AIR) 1845.  The emission rates are derived from the ICAO databank and AP-42.

Compute the total Airbus emissions using the numerator in equation 10.

(1000 takeoffs/year)*(2 engines)*(2.459 secs/takeoff)*

(0.9459 g of CO/s + 0.24172 g of HC/s + 25.8546 g of NOx/s + 1.051 g of SOx/s) + (1000 landings/year)*(2 engines)*(0.712 secs/landing)*

(1.7794 g of CO/s + 0.14154 g of HC/s + 0.4044 g of NOx/s + 0.1011 g of SOx/s)

= 141.6 Kg/year
Similarly, compute the total Boeing emissions.

(500 takeoffs/year)*(2 engines)*(2.409 secs/takeoff)*

(0.8514 g of CO/s + 0.03784 g of HC/s + 16.7442 g of NOx/s + 0.946 g of SOx/s) + (500 landings/year)*(2 engines)*(0.709 secs/landing)*

(3.9216 g of CO/s + 0.25992 g of HC/s + 0.4446 g of NOx/s + 0.114 g of SOx/s)

= 48.12 Kg/year
Compute the total Cessna emissions.

(100 takeoffs/year)*(2.509 secs/takeoff)*

(12.096 g of CO/s + 0.1322 g of HC/s + 0.02453 g of NOx/s + 0.0012 g of SOx/s) + (100 landings/year)*(1.799 secs/landing)*

(1.285 g of CO/s + 0.0439 g of HC/s + 0.00062 g of NOx/s + 0.00013 g of SOx/s)

= 33.13 Kg/year
Sum the total emissions for all aircraft.  This is the denominator in equation 10.

141.6 Kg/year + 48.12 Kg/year + 33.13 Kg/year = 222.88 Kg/year

By equation 10, determine the weight for each aircraft type.

For the Airbuses, 141.6 / 222.88 = 0.6354.

For the Boeings, 48.12 / 222.88 = 0.2159.

For the Cessnas, 33.13 / 222.88 = 0.1487.
Hypothetically, suppose the Airbus 320-200 has a release height of 3 meters and an initial vertical sigma of 4 meters, the Boeing 737-300 a release height of 2 meters with an initial vertical sigma of 2.5 meters, and the Cessna 172 a release height and initial vertical sigma both equal to 1 meter.

By equation 5, compute the mean release height.

(0.6354)(3 m) + (0.2159)(2 m) + (0.1487)(1 m) = 2.4867 meters

By equation 8, compute the composite variance.

(.6354)[(4m)2 + (3m) 2] 

+ (0.2159)[(2.5m) 2+(2m)2] 

+ (0.1487)[(1m)2+(1m)2]

- (2.4867m)2

[image: image14.wmf]@

 12.2117 m2.

The composite standard deviation is the positive square root of the variance and is therefore about 3.49 meters.  Figure 1 is a plot of the composite distribution with its Gaussian approximation superimposed with a dashed line.

Figure 3.  Plot of a Distribution and its Gaussian Approximation
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To implement this approximation in EDMS 4.0, the main AREMOD input file (.INP file) must be manually edited.  AERMOD input files generated by EDMS contain a key that matches the user-supplied names of sources to the eight-character names used by AERMOD.  If this example is applicable to the first section of runway 9, use the key to find the AERMOD name, RW09X001.  Each AERMOD source has a corresponding SRCPARAM line for the source parameters.  The SRCPARAM line for RW09X001 might originally look something like this:

SRCPARAM RW09X001 0.0     1.83     20.00     50.00     90.00     3.00
The second number is the above ground release height in meters.  The last number is the vertical plume size or sigma-z0 in meters.  After altering this line for this example, it should look like the following line.  The values have been rounded to the nearest centimeter.

SRCPARAM RW09X001 0.0     2.49     20.00     50.00     90.00     3.49
For runways, this process is usually repeated for each runway section.  Because each aircraft is accelerating and thus spends a different amount of time in each of the fifty-meter sections of a runway, and because the weighting scheme depends upon these times, the aircraft weights generally change for each section.  If the weights change, the composite distribution and its Gaussian approximation also change.  The release height and initial sigma of each runway section will vary.

Error Analysis


To discover the worst possible impacts to concentrations by performing this approximation, an error analysis was performed on concentrations from area sources in AERMOD using the full year of 1996 weather at Corpus Christi International Airport (CRP).  Concentrations were measured with a polar receptor network centered on and completely encircling the sources with a vector every 10 degrees and distances ranging from 100 to 10,000 meters.  For each weather hour and radial distance, only the peak concentration was recorded, as it would clearly be significant and would exclude most of the insignificant zero or trace receptor readings from the analysis.  The receptors were placed at a flagpole height of 1.8 meters.  The area sources were 10 meter by 10 meter squares.


The overall error, E, between two continuous distributions, f and g, was measured by the integral
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Through exhaustive search, it was determined that the greatest error between a single approximating Gaussian and the weighted sum of Gaussians it approximates occurs when there are only two Gaussians in the weighted sum.  This can be explained intuitively as when more Gaussians are added to a weighted sum, the more the sum resembles a single Gaussian.


The release heights and initial vertical sigmas of the component Gaussians were limited to the real world value range of one to six meters.  No widely used aircraft is known to have an effective release height greater than six meters or less than 1 meter.  Preliminary information on the scale of the sigmas was unavailable at the time of the analysis and was believed to also be within the same range as the release height.  The exhaustive search also revealed that the greatest error between a weighted sum of two Gaussians and its approximating Gaussian occurs when differences between the means, 1 and 2, and standard deviations, 1 and 2, of the Gaussians in the sum are maximized and a large majority of the weight is applied to the component with the smaller standard deviation.  This method was used to develop test cases I and II.

Case I attempts to maximizes error with 1 = 1m, 1 = 6m, 2 = 6m, 2 = 1m, w1 = 0.167 and w2 = 0.833.  The approximating Gaussian has a mean,  equal to (0.167)(1m) + (0.833)(6m) = 5.165m, and a standard deviation, , equal to 
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Case II is identical to case I except that the values of 1 and 2 were swapped.  The approximating Gaussian of case II is also the same except for having a mean of 1.835m.

One might think that the differences between the concentrations from such a weighted sum and its Gaussian approximation would be maximized, but the relationship is not linear.  Intuitively, the weighted sum of Gaussians most incongruous to its approximating Gaussian should be the sum of two equally weighted Gaussians with maximally separated means and minimal standard deviations.  This was also tested as case III; although, its error value from equation 11 was less than that obtained at the maxima found by exhaustion.

In case III, 1 = 1m, 1 = 1m, 2 = 6m, 2 = 1m, and w1 = w2 = 0.5.  Therefore,

 = 3.5m and 
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 in the approximating Gaussian.  Table 1 summarizes the three cases.

Table 1.  Values of the statistical variables in each case.

	Variable
	Case I
	Case II
	Case III

	w
	0.167
	0.167
	0.5

	
	1 m
	6 m
	1 m

	
	6 m
	6 m
	1 m

	w
	0.833
	0.833
	0.5

	
	6 m
	1 m
	6 m

	
	1 m
	1 m
	1 m

	
	5.17 m
	1.84 m
	3.5 m

	
	3.21 m
	3.21 m
	2.69 m


Relative error between the peak concentrations from the approximating and approximated area sources was categorized into the following bins:  “less than -50%” (more than a factor of 2 underprediction), “-10% to 10%” (on target prediction), “greater than 100%” (more than a factor of 2 overprediction) and bins for every interval of 10% in between.  Tables 2, 3 and 4 show the bin totals out of 8,784 hours (the number of hours in a leap year) at each measured distance in the polar network for cases I, II and III, respectively.

In addition to the 1996 weather at CRP, Case III was also conducted with 1992 weather at Washington National Airport (DCA).  However, this did not cause any error 

Table 2.  Case I error bin counts at each measured distance.

	Distance (meters)
	<-50

%
	[-50%,

-40%)
	[-40%,

-30%)
	[-30%,

-20%)
	[-20%,

-10%)
	[-10%, 10%]
	(10%, 20%]
	(20%, 30%]
	(30%, 40%]
	(40%, 50%]
	(50%, 60%]
	(60%, 70%]
	(70%, 80%]
	(80%, 90%]
	(90%, 100%]
	>100%

	100
	0
	0
	0
	0
	0
	7701
	684
	59
	170
	47
	1
	0
	1
	0
	3
	118

	200
	0
	0
	0
	0
	0
	8508
	147
	9
	2
	6
	9
	20
	32
	13
	14
	24

	300
	0
	0
	0
	0
	0
	8583
	83
	11
	31
	31
	19
	12
	13
	1
	0
	0

	400
	0
	0
	0
	0
	0
	8617
	61
	44
	25
	23
	14
	0
	0
	0
	0
	0

	500
	0
	0
	0
	0
	0
	8647
	64
	34
	36
	3
	0
	0
	0
	0
	0
	0

	600
	0
	0
	0
	0
	0
	8691
	41
	47
	5
	0
	0
	0
	0
	0
	0
	0

	700
	0
	0
	0
	0
	0
	8681
	72
	31
	0
	0
	0
	0
	0
	0
	0
	0

	800
	0
	0
	0
	0
	0
	8667
	116
	1
	0
	0
	0
	0
	0
	0
	0
	0

	900
	0
	0
	0
	0
	0
	8681
	103
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1000
	0
	0
	0
	0
	0
	8697
	87
	0
	0
	0
	0
	0
	0
	0
	0
	0

	2000
	0
	0
	0
	0
	4
	8710
	70
	0
	0
	0
	0
	0
	0
	0
	0
	0

	3000
	0
	0
	0
	1
	1
	8659
	123
	0
	0
	0
	0
	0
	0
	0
	0
	0

	4000
	2
	0
	3
	0
	1
	8497
	274
	0
	0
	0
	0
	1
	0
	0
	0
	6

	5000
	3
	0
	5
	2
	7
	8420
	338
	0
	1
	0
	2
	0
	0
	0
	1
	5

	6000
	11
	0
	6
	0
	9
	8380
	374
	2
	0
	0
	0
	0
	0
	0
	0
	2

	7000
	1
	2
	11
	0
	2
	8197
	563
	6
	0
	0
	0
	0
	0
	0
	0
	2

	8000
	15
	1
	8
	1
	13
	8191
	547
	7
	1
	0
	0
	0
	0
	0
	0
	0

	9000
	9
	0
	5
	1
	3
	7871
	863
	22
	0
	0
	0
	0
	0
	0
	0
	10

	10000
	11
	2
	17
	3
	6
	8078
	629
	28
	0
	2
	0
	0
	0
	0
	0
	8


Table 3.  Case II error bin counts at each measured distance.

	Distance (meters)
	<-50

%
	[-50%,

-40%)
	[-40%,

-30%)
	[-30%,

-20%)
	[-20%,

-10%)
	[-10%, 10%]
	(10%, 20%]
	(20%, 30%]
	(30%, 40%]
	(40%, 50%]
	(50%, 60%]
	(60%, 70%]
	(70%, 80%]
	(80%, 90%]
	(90%, 100%]
	>100%

	100
	0
	0
	0
	0
	2038
	6494
	97
	29
	4
	0
	0
	0
	0
	0
	0
	122

	200
	0
	0
	0
	0
	467
	8120
	46
	24
	5
	0
	1
	1
	1
	1
	1
	117

	300
	0
	0
	0
	0
	165
	8393
	38
	39
	18
	9
	4
	0
	0
	3
	4
	111

	400
	0
	0
	0
	0
	142
	8417
	60
	32
	9
	6
	1
	4
	2
	8
	11
	92

	500
	0
	0
	0
	0
	90
	8423
	95
	35
	19
	8
	5
	8
	6
	20
	42
	33

	600
	0
	0
	0
	0
	67
	8433
	86
	51
	31
	13
	4
	12
	29
	29
	29
	0

	700
	0
	0
	0
	0
	64
	8413
	109
	54
	29
	24
	25
	24
	25
	17
	0
	0

	800
	0
	0
	0
	0
	71
	8359
	132
	71
	72
	40
	31
	8
	0
	0
	0
	0

	900
	0
	0
	4
	6
	79
	8290
	187
	96
	77
	45
	0
	0
	0
	0
	0
	0

	1000
	0
	6
	4
	0
	83
	8277
	211
	94
	84
	25
	0
	0
	0
	0
	0
	0

	2000
	1
	8
	3
	3
	160
	7921
	331
	185
	142
	30
	0
	0
	0
	0
	0
	0

	3000
	16
	3
	5
	6
	245
	7498
	539
	229
	230
	13
	0
	0
	0
	0
	0
	0

	4000
	26
	5
	13
	8
	308
	7149
	577
	424
	252
	22
	0
	0
	0
	0
	0
	0

	5000
	41
	4
	5
	25
	339
	6786
	691
	605
	249
	39
	0
	0
	0
	0
	0
	0

	6000
	42
	6
	11
	22
	432
	6411
	635
	903
	245
	77
	0
	0
	0
	0
	0
	0

	7000
	57
	7
	17
	11
	492
	6107
	711
	948
	342
	92
	0
	0
	0
	0
	0
	0

	8000
	69
	19
	25
	17
	522
	5845
	720
	1090
	343
	133
	1
	0
	0
	0
	0
	0

	9000
	78
	12
	25
	22
	585
	5537
	675
	1283
	431
	133
	3
	0
	0
	0
	0
	0

	10000
	95
	29
	21
	6
	607
	5361
	646
	1362
	471
	183
	3
	0
	0
	0
	0
	0


Table 4.  Case III error bin counts at each measured distance.

	Distance (meters)
	<-50

%
	[-50%,

-40%)
	[-40%,

-30%)
	[-30%,

-20%)
	[-20%,

-10%)
	[-10%, 10%]
	(10%, 20%]
	(20%, 30%]
	(30%, 40%]
	(40%, 50%]
	(50%, 60%]
	(60%, 70%]
	(70%, 80%]
	(80%, 90%]
	(90%, 100%]
	>100%

	100
	0
	0
	0
	0
	2
	8414
	47
	88
	73
	29
	7
	2
	0
	0
	0
	122

	200
	0
	0
	0
	0
	203
	8337
	65
	41
	12
	4
	1
	1
	1
	1
	1
	117

	300
	0
	0
	0
	0
	196
	8341
	49
	38
	28
	10
	4
	0
	2
	5
	5
	106

	400
	0
	0
	0
	0
	355
	8157
	80
	37
	29
	9
	5
	5
	6
	15
	51
	35

	500
	0
	0
	0
	0
	634
	7869
	89
	51
	28
	2
	7
	34
	43
	27
	0
	0

	600
	0
	0
	0
	0
	874
	7628
	86
	64
	22
	18
	35
	49
	8
	0
	0
	0

	700
	0
	0
	0
	0
	1039
	7429
	114
	64
	52
	27
	49
	10
	0
	0
	0
	0

	800
	0
	0
	0
	0
	1189
	7265
	137
	75
	59
	47
	12
	0
	0
	0
	0
	0

	900
	0
	0
	0
	0
	1282
	7125
	194
	66
	91
	26
	0
	0
	0
	0
	0
	0

	1000
	0
	0
	0
	0
	1391
	6994
	196
	110
	93
	0
	0
	0
	0
	0
	0
	0

	2000
	0
	0
	0
	10
	1945
	6192
	342
	218
	77
	0
	0
	0
	0
	0
	0
	0

	3000
	2
	1
	4
	9
	2294
	5596
	438
	403
	37
	0
	0
	0
	0
	0
	0
	0

	4000
	11
	0
	0
	16
	2360
	5288
	588
	440
	81
	0
	0
	0
	0
	0
	0
	0

	5000
	14
	0
	4
	23
	2238
	5048
	802
	507
	147
	0
	1
	0
	0
	0
	0
	0

	6000
	25
	0
	9
	19
	2078
	4899
	970
	641
	143
	0
	0
	0
	0
	0
	0
	0

	7000
	16
	2
	12
	18
	1961
	4788
	1111
	699
	177
	0
	0
	0
	0
	0
	0
	0

	8000
	25
	4
	10
	23
	1938
	4642
	1084
	830
	225
	0
	2
	0
	0
	1
	0
	0

	9000
	28
	9
	27
	21
	1778
	4463
	1274
	903
	278
	3
	0
	0
	0
	0
	0
	0

	10000
	27
	4
	16
	53
	1747
	4279
	1381
	1011
	258
	6
	1
	0
	1
	0
	0
	0


bin total at any receptor distance to differ by more than 456 or 5.2% of 8,784.  Hence, the data presented in the following tables are likely to slightly vary for different airports.


Tables 2, 3 and 4 indicate that error tends to increase with distance.  This may seem counterintuitive, because with distance the initial dispersion conditions at the source should have a smaller impact on the concentrations at the receptors.  However, recall that this examines only the peak concentration at a distance, the one nearest the plume centerline.  Since the receptors at greater distances have greater spatial separation, they are more apt to not catch a reading near the plume centerline and more apt to measure the less significant concentrations.

Table 5. Error bin totals as a percentage out of 8,784 for each of the three cases broken out into two distance ranges.

	
	Case I
	Case II
	Case III

	Error Bin
	100-1000m
	1000-10000m
	100-1000m
	1000-10000m
	100-1000m
	1000-10000m

	< -50%
	0.0%
	0.1%
	0.0%
	0.5%
	0.0%
	0.2%

	[-50%, -40%)
	0.0%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	[-40%, -30%)
	0.0%
	0.1%
	0.0%
	0.1%
	0.0%
	0.1%

	[-30%, -20%)
	0.0%
	0.0%
	0.0%
	0.1%
	0.0%
	0.2%

	[-20%, -10%)
	0.0%
	0.1%
	3.7%
	4.3%
	8.2%
	22.5%

	[-10%, 10%]
	97.3%
	95.3%
	92.9%
	76.2%
	88.3%
	59.4%

	(10%, 20%]
	1.7%
	4.4%
	1.2%
	6.5%
	1.2%
	9.3%

	(20%, 30%]
	0.3%
	0.1%
	0.6%
	8.1%
	0.7%
	6.6%

	(30%, 40%]
	0.3%
	0.0%
	0.4%
	3.2%
	0.6%
	1.7%

	(40%, 50%]
	0.1%
	0.0%
	0.2%
	0.9%
	0.2%
	0.0%

	(50%, 60%]
	0.0%
	0.0%
	0.1%
	0.0%
	0.1%
	0.0%

	(60%, 70%]
	0.0%
	0.0%
	0.1%
	0.0%
	0.1%
	0.0%

	(70%, 80%]
	0.1%
	0.0%
	0.1%
	0.0%
	0.1%
	0.0%

	(80%, 90%]
	0.0%
	0.0%
	0.1%
	0.0%
	0.1%
	0.0%

	(90%, 100%]
	0.0%
	0.0%
	0.1%
	0.0%
	0.1%
	0.0%

	>100%
	0.2%
	0.0%
	0.5%
	0.0%
	0.4%
	0.0%


Table 5 shows the error bin counts as a percentage out of the 8,784 weather hours in all three cases, averaged over two source-receptor distance ranges, 100 to 1,000 meters and 1,000 to 10,000 meters.

The error for case I is minimal.  At distances of 1000 meters and less, 97.3% of the concentrations from the approximation were within 10% of the concentrations from the approximated sources.  This value dips to 95.3% for measurements at 1000 meters and greater.

In case II, this statistic falls to 92.9% for the nearer distances and drops to 76.2% for the farther distances.  Therefore, the approximation worked better in case I than in II.  The effective release height in case I is 3.33 meters higher than it is in case II.  The higher release height apparently allows greater concentrations of pollutant to travel farther and reduce the error at greater distances.

Case III, in which the plume masses were concentrated at and evenly split between the high and low extremes, fares even worse than case II, especially at distances greater than 1000 meters where only 59.4% of the errors fell between –10 and 10%.  The smaller initial sigmas in case III evidently keep the plumes sufficiently concentrated such that the more distant receptors are even less likely to measure the more significant concentrations.

In all three cases, overprediction or underprediction by a factor of two or more at any given distance was insignificant.

Conclusion

The accuracy of the concentrations produced by AERMOD is generally accepted to be within a factor of two.
  The results presented here show that the proposed approximation method maintains this level of acceptability.

The fraction of the total airport emissions inventory is attributable to aircraft might necessitate the use of stacked sources to represent an aircraft fleet.  If aircraft actually contribute little to an airport’s total emissions, then the modeling of aircraft sources need not be as accurate as possible and an approximation would suffice.  When measured initial sigmas from aircraft become publicly available, they may lie in a more constrictive range than what is assumed here.  If so, this should reduce the greatest amount of error from any approximation.

This paper’s derivation may be generalized to apply to other types of coinciding sources to further reduce AERMOD run times.







� Seventh Conference on Air Quality Modeling, Volume I, EPA Auditorium, 401 M Street, S.W., Washington, DC, June 28, 2000









_1082380594.unknown

_1082381196.unknown

_1082381843.unknown

_1082383863.unknown

_1082385346.unknown

_1082381458.unknown

_1082380749.unknown

_1082381098.unknown

_1082380710.unknown

_1082380357.unknown

_1082380413.unknown

_1080975529.unknown

_1081864622.unknown

_1081865344.unknown

_1046695292.doc



